APl Documentation

API reference

Module sbrain.dataset

Class DataSetimageClassification

A DataSetlmageClassification represents an image dataset that can be used for training classification models. Comprises of images and
labels.

__init__ (name)
Instantiates a dataset object.
Args:
name : Name of the dataset
create (description,
source_archive_path,
classes,
collection_date,
image_iterator,

label_iterator)

Creates the dataset in the system.
Args:
description: description about the dataset
source_archive_path: path to the directory with the original images and labels, that the user wants to register with the SBrain.
classes: (optional) a dict with the different classes and unique numeric ids representing those classes.
e.g: {“cat™0, "dog":1}

collection_date: String representing the date on which the data was collected. Should have the following format “mm-dd-yyyy” e.g.
“06-12-2018”

image_iterator: A function that returns an iterator to a list with paths of images in the source_archive_path.

label_iterator: A function that returns an iterator to a list tuples. The tuple is of format (image_name, label) where image name is the
name of image in the dataset and label is a string. It could be the class of the image, or multiple classes comma separated (in case
of multi label problems).

Both image_iterator and label_iterator functions take “root_path” as argument. Root path is source_archive_path. This path will be
provided by SBrain when calling these functions.

return a DataSetExtractionJob.

retry_create (source_archive_path,
classes,
collection_date,
image_iterator,

label_iterator)

Retry tries to retry creating the dataset in the system, typically when a dataset was creation failed due to image_iterator/ label_iterator



functions fail due to some issues.
Args:

source_archive_path: (optional) file path with the original images and labels, that the user wants to register with the SBrain. If this
parameter is not given, the original source_archive_path, provided while dataset creation will be used.

classes: (optional) a dict with the different classes and unique numeric ids representing those classes. If this parameter is not given,
the original 'classes', provided while dataset creation will be used.

e.g: {“cat™0, "dog”:1}

collection_date: (optional) String representing the date on which the data was collected. Should have the following format
“mm-dd-yyyy” e.g. “06-12-2018". If this parameter is not given, the original ‘collection_date', provided while dataset creation will be
used.

image_iterator: (optional) A function that returns an iterator to a list with paths of images in the source_archive_path. If this
parameter is not given, the original 'image_iterator', provided while dataset creation will be used.

label_iterator: A function that returns an iterator to a list tuples. The tuple is of format (image_name, label) where image name is the
name of image in the dataset and label is a string. It could be the class of the image, or multiple classes comma separated (in case
of multi label problems).

Both image_iterator and label_iterator functions take “root_path” as argument. Root path is source_archive_path. This path will be
provided by SBrain when calling these functions.

return a DataSetExtractionJob.
NOTE :
1. If the dataset.create() failed because of faulty image iterator, call the retry_create() with only the "image_iterator" parameter.
Other parameters are optional and the original values provided in create() will be used.
2. If the dataset.create() failed because of faulty label iterator, you can call the retry_create() with only the "label_iterator" parameter.
Other parameters are optional and the original values provided in create() will be used.

3. "collection_date" parameter can be used to override the date given in original create() api, only if this parameter is passed to
retry_create()

along with "source_archive_path" and/or "image_iterator" parameter.

search(name, author, description)
searches image datasets with given search criteria.
Args:
name: (optional) Name of the dataset to be searched.
DataSets with partially matching names are also returned.
author: (optional) Author or name of the user who created the dataset.
DataSets with author names partially matching, are also returned.
description: (optional) description of the DataSet.
DataSets with words in the description matching the input are returned.
lookup(name)
Looks up a dataset by name. Name should match exactly, its case sensitive.
Args:
name: name of the dataset to look up.
version(version_name)
Returns a version of the dataset with given version_name.
Args:

version_name: exact name of the DataSetVersion belonging to this dataset to be returned.



search_versions(version_name=None, version_author=None, version_description=None)

searches image DataSetVersions with given search criteria for current dataset.

Args:
version_name: (optional) Name of the dataSetVersion to be searched.
DataSetVersions with partially matching names are also returned.
version_author: (optional) Author or name of the user who created the dataSetVersion.
DataSetVersions with author names partially matching, are also returned.
version_description: (optional) description of the DataSetVersion.

DataSetVersions with words in the description matching the input are returned.

Class DataSetVersion
Represents particular version of a root dataset. Version "v1" is created by default when a dataset is created.
Additional versions of the dataset can be created by applying different transformations.
__init__(source_dataset, version)
Instantiates a DataSetVersion object.
Args:
source_dataset: The source dataset from which this dataset version belongs to.
version: string name of the version.
transform (transformation)
Method to apply a transformation to the DataSetVersion.
Args:
transformation: object of type Transformation, which represents the transformation that is to be applied to the DataSetVersion.
split(split_name)
Looks up a DataSetSplit for this DataSetVersion, split_name should match exactly, its case sensitive.
Args:
split_name: name of the DataSetSplit to look up.
lookup(dataset_name, dataset_version_name)

Looks up a dataset version using dataset name and dataset version name, dataset_name and dataset_version_name should match
exactly, its case sensitive.

Args:
dataset_name: name of the dataset to look up.
dataset_version_name: name of the dataset version to look up.

create_data_split(split_name, split_percentage, description, data_exclude_function, label_exclude_function)
Process to create DataSetSplit for this DataSetVersion

Args:
split_name: name of the DataSetSplit to be created
split_percentage: a list of numbers representing ratio of each portion of all desired splits, total must be equal to 100%.
description: description of the split process
data_exclude_function: a function that works like a filter to exclude data while processing the splits.

label_exclude_function: a function that works like a filter to exclude label while processing the splits.



search_splits(split_name, split_author, split_description)
searches DataSetsplits using the given search criteria for the current DataSetVersion.
Args:
split_name: (optional) Name of the dataSetSplit to be searched.
DataSetSplits with partially matching names are also returned.
split_author: (optional) Author or name of the user who created the dataSetSplit.
DataSetSplits with author names partially matching, are also returned.
split_description: (optional) description of the DataSetSplit.
DataSetSplits with words in the description matching the input are returned.
search(dataset_name, name, author, description)
searches DataSetVersions using the given search criteria.
Args:
dataset_name: (optional) Name of the dataSet to be searched.
DataSetVersions with partially matching names are also returned.
name: (optional) Name of the dataSetVersion to be searched.
DataSetVersions with partially matching names are also returned.
author: (optional) Author or name of the user who created the dataSetVersion.
DataSetVersions with author names partially matching, are also returned.
description: (optional) description of the DataSetVersion.

DataSetVersions with words in the description matching the input are returned.

Class DataSetSplit

A DataSetSplit represents the process to divide dataset to multiple splits using the given ratio, for example, split a dataset to train, validate
and test.

__init__ (name, dataset_version, split_percentages)
Instantiates a DataSetSplit object.
Args:
name : Name of the DataSetSplit
dataset_version : instance of DataSetVersion
split_percentages: a list of numbers representing ratio of each portion of all desired splits, total must be equal to 100%
create (description, data_exclude_function, label_exclude_function)
Creates the DataSetSplit in the system.
Args:
description: description of the split process
data_exclude_function: a function that works like a filter to exclude data while processing the splits.
label_exclude_function: a function that works like a filter to exclude label while processing the splits.
search(dataset_name, dataset_version_name, split_name, author, description)
searches DataSetSplits with given search criteria.
Args:
dataset_name: (optional) Name of the dataset to be searched.

DatasetSplit with partially matching names are also returned.



dataset_version_name: (optional) Name of the DataSet Version to be searched.
DatasetSplit with partially matching names are also returned.
split_name: (optional) Name of the DataSetSplit to be searched.
DatasetSplit with partially matching names are also returned.
author: (optional) Author or name of the user who created the DataSetSplit.
DataSetSplit with author names partially matching, are also returned.
description: (optional) description of the DataSetSplit.
DataSetSplit with words in the description matching the input are returned.
lookup(dataset_name, dataset_version_name, split_name)
Looks up a DataSetSplit by dataset name, DataSetVersion name, split name. Name should match exactly, its case sensitive.
Args:
dataset_name: Name of the dataset to look up.
dataset_version_name: Name of the DataSetVersion to look up.
split_name: Name of the DataSetSplit to look up.
retrieve(id)
Looks up a DataSetSplit by id. id is the primary key in the database. It is int type and should be matched exactly.
Args:

id: id of the DatasetSplit to look up.

Class TransformationSet

A TransformationSet represents the process to apply a sequence of transformations to a given source DataSetVersion.
__init__ (source_dataset_version)

Instantiates a TransformationSet object.

Args:

source_dataset_version : a source DataSetVersion object

transform (transformation)

add a transformation to list that will be applied to the source DataSetVersion.

Args:

transformation: object of type Transformation, which represents the transformation to be applied to the source DataSetVersion.

run (number_workers, target_version, cores, memory, partitions, data_exclude_function, label_exclude_function)

kick off the action to apply all transformations added in transformation set to the source DataSetVersion and produce a target
DataSetVersion, a transformation job will be created for the process.

Args:
number_workers: number of spark cluster workers to be provisioned for the transformation job.
target_version: the target DataSetVersion name to be created for result of the transformation job.
cores: number of cores of spark cluster worker machine that will be provisioned for the transformation job, default 2.
memory: memory size of spark cluster worker machine that will be provisioned for the transformation job, default 2G.
partitions: repartition the source dataset to specified partition number. default value 0.
-1: no repartition,
0 : repartition to the size of cores x number _workers.

i : positive integer i, repartititon to i, otherwise error.



data_exclude_function: a function that works like a filter to exclude data while processing the transformation.

label_exclude_function: a function that works like a filter to exclude label while processing the transformation.

apply_to_file(src_path, des_path, transformations_set)

Its a static method, provided for testing and debugging purposes, that can be used to test given set of transformations on a single
image file.

Args:
src_path: path to source the image file.
des_path: path where to write the output image.

transformations_set: list of transformation objects to be applied on the source image.

Class Transformation
A Transformation represents the process logic that transforms a given input from one form to another form.
__init__ (name)
Instantiates a Transformation object.
Args:
name : Name of the transformation
create (author, description)
Creates the transformation in the system.
Args:
author: author of the transformation
description: description about the transformation
search(name, author, description)
searches image transformation with given search criteria.
Args:
name: (optional) Name of the transformation to be searched.
Transformations with partially matching names are also returned.
author: (optional) Author or name of the user who created the transformation.
Transformation with author names partially matching, are also returned.
description: (optional) description of the Transformation.
Transformations with words in the description matching the input are returned.
lookup(name)
Looks up a transformation by name. Name should match exactly, its case sensitive.
Args:
name: name of the transformation to look up.
retrieve(transform_id)
Looks up a transformation by transform id. transform_id is the primary key in the database. It is int type and should be matched exactly
Args:
transform_id: id of the transformation to look up.
override(**override_parm)
Overrides an inherited transformation object's attributes.

Args:



override_parm: a number of key value pairs in the form of "key=value"
process(**arr_in)
apply the transformations to the input.
Args:

arr_in: the input to be applied transformations.

Class DataSetExtractionJob

A DataSetExtractionJob represents the process that creates a new data set.
__init__ (job_name, job_id, dataset_name, dataset_version_name, job_status, job_created_date, details)
Instantiates a DataSetExtractionJob object.
Args:
job_name : Name of the job
job_id :id of the job
dataset_name : Name of the dataset
dataset_version_name : Name of dataset version
job_status : status of the job
job_created_date : create date of the job
details: details about this job
get_status()
get current status of job.
get_dataset()
get the dataset created from this job.
cancel()
cancel this job.
search_jobs(dataset_name, job_name, age, created_date, updated_date, author, status)
Args:
dataset_name : (optional) dataset name to be searched, partial match allowed
job_name : (optional), job name, partial match allowed.
age : (optional), age of job, only job age is less than this age will be returned
created_date : (optional) created date of job
updated_date : (optional) updated date of job
author : (optional) author, partial matched allowed

status: (optional) status of job, partial matched allowed

Class DataSeSplitJob

A DataSetSplitJob represents the process that creates a data set split.

__init__ (job_name, job_id, dataset_name, dataset_version_name, dataset_split_name, job_status, job_created_date, split_percentage,
details)

Instantiates a DataSetExtractionJob object.
Args:

job_name : Name of the job



job_id :id of the job
dataset_name : Name of the dataset
dataset_version_name : Name of dataset version
dataset_split_name : Name of dataset split
job_status : status of the job
job_created_date : create date of the job
split_percentage: a list of numbers representing ratio of each portion of all desired splits, total must be equal to 100%.
details: details about this job
get_status()
get current status of job.
get_dataset_split()
get the DataSetSplit created from this job.
cancel()

cancel this job.

Class TransformationJob

A TransformationJob represents the process that run transformation over dataset.
__init__ (name, status, details)
Instantiates a TransformationJob object.
Args:
job_name : Name of the job
status : status of the job
details: details of the job
get_status()
get current status of job.

list_jobs(name, description, dataset_name, dataset_version_from_name, dataset_version_to_name, created_date, updated_date, author, status,
age)

list jobs by the filter.

Args:
name : (optional), job name, partial match allowed.
dataset_name : (optional) dataset name to be searched, partial match allowed
dataset_version_from_name : (optional) source dataset version to be searched, partial match allowed
dataset_version_to_name : (optional) target dataset version to be searched, partial match allowed
created_date : (optional) created date of job
updated_date : (optional) updated date of job
author : (optional) author, partial matched allowed
status: (optional) status of job, partial matched allowed
age : (optional), age of job, only job age is less than this age will be returned

get_job_metrics_details(job_name, partition_index)

list job metrics, all fields has default None, all fields are exact match, if no filter field is specified, get_job_metrics_details will return all job
entries.

cancel()



cancel this job.

Module sbrain.learning.experiment

Class Estimator

Estimator is a high-level API that simplifies machine learning programming and encapsulate various information related to model training
like matrix multiplications, saving checkpoints and so on.

create(estimator_name, description, estimator_obj)
Stores the estimator object in the repository.
Args:
estimator_name: unique name for the estimator.
description: text description of the estimator.

estimator_obj: estimator object created with the NewClassificationEstimator method.

Returns: Instance of created estimator.

lookup(name):
This function allows you to lookup Estimator object by providing name.
Args:
name : Name of the Estimator.

Returns: Instance of estimator which exactly matches the given name.

retrieve(id):
This function allows you to lookup Estimator object by providing estimator id.
Args:
id : Unique Id of the Estimator.

Returns: Instance of estimator for the given id.

list_all():
This function allows to search all Estimators.

Returns: Returns the list of all estimator instance. Also prints them on notebook.

search(estimator_name, description):
This function allows you to search Estimator object by providing estimator name and description.
Args:
estimator_name: Name of the Estimator.
description: Description of the Estimator

Returns: Returns the list of all estimator instance matching the search criteria. Also prints them on notebook.

NewClassificationEstimator(model_fn):



Instantiates an estimator model given a model function
Args:

model_fn : Python function that creates the computational graph with the TensorFlow API. The function must return an object of the
class tf.EstimatorSpec.

Returns: Static constructor to create a new instance of classification estimator.

Class HParams

This object allows you to initialize hyper parameters before training the neural network model.

__init__(iterations, batch_size)
Args:
iterations : Number of passes, each pass using [batch size] number of examples.

batch_size : Number of training examples in one forward/backward pass. The higher the batch size, the more memory space you'll
need.

Class HParamValues

This object allows you to initialize hyper parameters values.

__init__(name, paramlist)
Args:
name : name of this HParamValues list.

paramlist : parameter list.

Class HyperParamsSpace

This object allows you to initialize hyper parameters space. You can specify the space as either discrete list or as a constant value.

__init__(list_of_hparam_vals)
Args:
list_of _hparam_vals : list of hyper parameter values.
grid_search()
Returns grid search settings for this HyperParamsSpace.

Returns: Returns the HParamsSearch object.

Class HParamsSearch

This object allows you to search hyper parameters.
__init__(list_of_hparam_vals)
Args:

list_of_hparam_vals : list of hyper parameter values.



Class RunConfig

This object allows you to set parameters for running experiments in distributed environment.

__init__(no_of_ps, no_of workers, summary_save_frequency, run_eval, use_gpun, transfer_learning_config)
Args:
no_of_ps : Number of parameter servers required.
no_of_workers: Number of tensor-flow workers required.
summary_save_frequency: Summary save frequency.
run_eval: Boolean value for run eval.
use_gpu: Boolean value if CPU or GPU is required.

transfer_learning_config: Instance of TransferLearningConfig.

Class TransferLearningConfig

This object allows you to set parameters for transfer learning.

__init__(model_checkpoint, vars_to_load)
Args:
model_checkpoint : model checkpoint instance.

vars_to_load: variables to load.

Class Experiment

Experiment is a high-level API for distributed training. It contains all information needed to train and build models on a local host or on a
distributed multi-server environment on CPUs and GPUs.

no_of_jobs()
returns total number of jobs for this experiment.
Returns: Returns the number of jobs as int.
list_jobs()
list all jobs for this experiment with the current state.
Returns: Returns list of job instances.
get_jobs()
gets all jobs for this experiment, but may not be current. Could be stale depending on when this experiment instance was looked up.
Returns: Returns list of job instances.
list_models()
list all models with its current state.
Returns: Returns list of model instances.
get_models()
gets all models, but may not be current. Could be stale depending on when this experiment instance was looked up.
Returns: Returns list of model instances.
list_all()

list all experiments.



Returns: Returns list of experiment instances.
get_single_job()
gets the single job under the experiment if it is of single job type. Else throws error.
Returns: Returns the single job instance.
cancel()
Cancels this experiment and waits for it to exit.
Returns: Void.
request_cancellation()
Requests cancellation of this experiment but does not wait for it exit.
Returns: void.
get_best_model_until_now(key_function)
This function sorts the models under this experiment based on the key function provided and gets the first model under it.
Args:
key_function: The function which takes in the model metric dictionary and returns the key to search on.
Returns: Returns the best model based on the provided key_function.
wait_until_finish(time_out_in_seconds, check_every_n_seconds)
This function allows to wait for experiment until it has finished.
Args:
time_out_in_seconds : time out seconds
check_every_n_seconds: periodic time to check experiment status.
Returns: void.
has_finished()
check if experiment has completed.
Returns: Boolean.
report_status()
Prints out experiment status onto the notebook.
Returns: void.
search(name_filter, description_filter)
searches experiments with given search criteria.
Args:
name_filter: (optional) Name of the experiment to be searched.
Experiments with partially matching names are also returned.
description_filter: (optional) description of the experiments.
Experiments with words in the description matching the input are returned.
Returns: Returns list of experiment instances.
lookup(name)
Looks up a experiment by name. Name should match exactly, its case sensitive.
Args:
name: name of the experiement to look up.

Returns: Returns experiment instance which matches the name exactly.



retrieve(experiment_id)
Looks up an experiment by experiment id. Experiment id is the primary key in the database. It is int type and should be matched exactly
Args:
experiment_id: id of the experiment to look up.
Returns: Returns experiment instance for the given id.
list_all()
list all experiments.

Returns: Returns the list of all experiment instances.

run(experiment_name, description, estimator, run_config, hyper_parameters, hparams_search_settings, dataset_version_split,
input_function, transfer_learning_config)

This function allows you to run experiment by providing estimator, hyper parameters and run config.
Args:
experiment_name : Name of the experiment.
description : Description of the experiement.
estimator : Estimator object.
run_config : RunConfig object.
hyper_parameters : HParams object.
hparams_search_settings: HParamsSearch object.
dataset_version_split : DataSetSplit object.
input_function : Input function.
transfer_learning_config : TransferLearningConfig object.

Returns: Returns the new experiment instance created as part of this run request.

Class LearningJob

LearningJob object allows you to get job status and acquire model information.
get_tensorboard_url()
get the url to access tensor board. If tensorboard is shutdown, a new one will be provided.
Returns: Returns the tensorboard url for this learning job as a string.
is_success()
check job if it succeeds.
Returns: returns boolean indicating whether job is success. Throws error if job is not finished.
is_failure()
check job if it fails.
Returns: returns boolean indicating whether job is failure. Throws error if job is not finished.
is_cancelled()
check job if it is cancelled.
Returns: returns boolean indicating whether job is cancelled. Throws error if job is not finished.
cancel()

Cancels this experiment and waits for it to exit.



Returns: void.
request_cancellation()
Requests cancellation of this experiment but does not wait for it exit.
Returns: void.
search(job_name, description)

searches jobs with given search criteria.

Args:
job_name: (optional) Name of the job to be searched.

Jobs with partially matching names are also returned.

description: (optional) description of the job.

Jobs with words in the description matching the input are returned.
Returns: list of job instances matched by the given search criteria.

lookup(name)
Looks up a job by name. Name should match exactly, its case sensitive.

Args:
name: name of the job to look up.

Returns: Instance of job which exactly matches the given name.

retrieve(id)
Looks up a job by job id. Job id is the primary key in the database. It is int type and should be matched exactly

Args:
id: id of the job to look up.

Returns: Instance of job for the given id.

has_finished()
This function allows to check status of a particular job whether it has finished or not

Returns: boolean indicating whether job is finished (success, failure or cancelled).
wait_until_finished(time_out_in_seconds, check_every_n_seconds)
This function allows to wait for a particular job until it has finished.
Args:
time_out_in_seconds : time out seconds

check_every_n_seconds: periodic time to check job status.

Returns: void.

get_model()
This function allows to get the current model object.

Returns: returns the model instance for this job.

Class Model
This class represent Model information.
get_result_metrics()
This function allows you to get model metrics.

Returns: returns result metrics as a dictionary.



search(model_name, description)
searches models with given search criteria.
Args:
model_name: (optional) Name of the model to be searched.
models with partially matching names are also returned.
description: (optional) description of the models.
Models with words in the description matching the input are returned.
Returns: returns the list of model instances matching the search criteria.
lookup(name)
Looks up a model by name. Name should match exactly, its case sensitive.
Args:
name: name of the model to look up.
Returns: returns the model instance which matches the name exactly.
retrieve(id)
Looks up a model by id. id is the primary key in the database. It is int type and should be matched exactly
Args:
id: id of the model to look up.

Returns: returns the model instance for the given id.

list_all()
list all models.

Returns: returns the list of all model instances.

submit_inference_job(job_name, description, input_function, output_function, best_model=False, gpu_required=False)

Submits an inference job on this model.
Args:
job_name: Name of the job.

description: Description for the job.

input_function: The function which feeds the input to the tensorflow estimator. This functions gets fed directly to the estimator without
any modification.

output_function: Function to handle the output.

best_model: Boolean indicating whether this should run on a best model reference.
gpu_required: Should use gpu for inference job.

Returns: ModellnferenceJob instance.

Class ModelCheckPoint
This class represent model checkpoint information.
get_all_trainable_vars()
This function allows you to get all trainable variables.

Returns: Returns the list of all trainable vars in the checkpoint as a list of strings.

get_all_vars()

This function allows you to get all variables.



Returns: Returns the list of all vars in the checkpoint as a list of strings.
get_passing_regex_vars(regexpr, trainable)
get vars with given search criteria.
Args:
regexpr: regular expression.
vars filtered by regular expression.
trainable: boolean value indicating if they are trainable vars.
Returns: Returns the list of all vars in the checkpoint, which matches the given regular expresssion, as a list of strings.
lookup(name)
Looks up a checkpoint by name. Name should match exactly, its case sensitive.
Args:
name: name of the checkpoint to look up.
Returns: Returns the model checkpoint instance for the given name.
retrieve(checkpoint_id)
Looks up a checkpoint by id. checkpoint id is the primary key in the database. It is int type and should be matched exactly
Args:
checkpoint_id: id of the checkpoint to look up.
Returns: Returns the model checkpoint instance for the given id.
search(name)
searches checkpoints with given search criteria.
Args:
name: (optional) Name of the checkpoints to be searched.
checkpoints with partially matching names are also returned.
description: (optional) description of the checkpoint.
Checkpoints with words in the description matching the input are returned.
Returns: Returns the list of model checkpoint instances for the given criteria.
list_all()
list all checkpoints.
Returns: Returns the list of all model checkpoint instances.
export()
export model checkpoint under the “"shared-dir"
Args:
model_id: (optional) id of the model for which you want to export the check point.
model_name: (optional) name of the model for which you want to export the check point.
checkepoint_id: id of the checpoint which you want to export.
checkpoint_name: name of the checkpoint which you want to export.
NOTE: need to provide either the model_id or model_name or checkpoint_id or checkpoint_name.
export_saved_model: Default False. If set to true the model will be exported as Tensorflow saved model format.

serving_input_receiver_func: if the export_saved_model=True, then this argument takes the serving input receiver function to be
used.

params: if export_saved_model = True, this argument is a dict that takes any extra parameters to be passed on to the serving input



receiver function.

Returns:
Returns ModelExportinformation object with the following fields:
export_dir_name: name of the directory under "shared-dir" where the model checkpoint was exported
checkpoint_id: id of the checkpoint
checkpoint_name: name of the checkpoint
model_id: id of the model if applies.

model_name: name of the model if applies.
saved_model_dir: name of the directory under the export_dir where the model is exported as saved model. This path will be returned

only in case export_saved_model=True in the input arguments.

Class ModelEndPoint
This class deploys a model to a REST end point. The REST end point can be called to get predictions.

create(model, endpoint_name, description, number_of_service_replicas, gpu_required)
creates and brings up a REST end point for a model.
Args:
model: model object that was created previously.
endpoint_name: name of end point (must be unique).
description : description of the end point.

number_of_service_replicas: count of pods to be replicated for load balancing traffic.

gpu_required: deploy on gpu capable pods or not.
Returns: Returns the model endpoint instance that got created.
shutdown()

Brings down a specific REST end point.

Returns: void.
lookup(endpoint_name)
Looks up a checkpoint by name. Name should match exactly, its case sensitive.
Args:
endpoint_name: name of the REST end point to look up.
Returns: Returns the model endpoint instance for the given name.
search(endpoint_name, author, description, status, model_name)

searches end points with given search criteria.

Args:
endpoint_name: (optional) Name of the end point to be searched. A partial mask also can be supplied.

author: (optional) author of the end point. A partial mask also can be supplied.
description: (optional) description of the end point. A partial mask also can be supplied.

status: (optional) status of the end point. A partial mask also can be supplied.

model_name: (optional) model name of the end point. A partial mask also can be supplied.

Returns: Returns the list of model endpoints that match the search criteria.



predict(feature_dict)
calls predict on the model endpoint
Args:

feature_dict: dictionary with structure {"features":[<array of datapoints>]}, where the each datapoint could be a base64encoded binary
image, or image as numpy array.

Returns:
returns the output prediction outputs defined in the model function for each data point
raw_predict(input_function, output_function)
Calls the predict on the underlying tensorflow estimator without invoking any transformation in SBrain.
Args:
input_function: Function which feeds the input to the estimator.
output_function: Function which serializes the output as a string, which is passed as the response of the raw_predict() call.
Returns:

Returns the same string that output_function produces.

Class ModellnferenceJob
This class represents an inference batch job
Attributes:

model_inference_job_id: Id of the job.
model_inference_job_name: Name of the job.
description: User provided description.
model_id: Model id reference for this job.
status: Status of the job.
created_by_user: user that created the job.
gpu_required: Whether gpu is required.
created_date: Created date.

updated_date: Updated date.

retrieve(job_id)
Retrieves a job for the given job id.

Returns: ModellnferenceJob instance.

Troubleshooting



	API Documentation

